青草草色a免费观看在线,亚洲精品国产首次亮相,狠狠躁夜夜躁av网站中文字幕,综合激情五月丁香久久

筆趣閣 - 其他小說 - 浩劫重生在線閱讀 - 太陽系

太陽系

    太陽系(sorsystem)就是我們現在所在的恒星系統。它是以太陽為中心,和所有受到太陽引力約束的天體的集合體:8顆行星冥王星已被開除、至少165顆已知的衛星,和數以億計的太陽系小天體。這些小天體包括小行星、柯伊伯帶的天體、彗星和星際塵埃。廣義上,太陽系的領域包括太陽、4顆像地球的內行星、由許多小巖石組成的小行星帶、4顆充滿氣體的巨大外行星、充滿冰凍小巖石、被稱為柯伊伯帶的第二個小天體區。在柯伊伯帶之外還有黃道離散盤面、太陽圈和依然屬于假設的奧爾特云。

太陽系是以太陽為中心,和所有受到太陽的引力約束天體的集合體:8顆行星、至少165顆已知的衛星、5顆已經辨認出來的矮行星(冥王星、

太陽及其行星

谷神星、鬩神星、妊神星和鳥神星)和數以億計的太陽系小天體。這些小天體包括小行星、柯伊伯帶的天體、彗星和星際塵埃。

廣義上,太陽系的領域包括太陽,4顆像地球的內行星,由許多小巖石組成的小行星帶,4顆充滿氣體的巨大外行星,充滿冰凍小巖石,被稱為柯伊伯帶的第二個小天體區。在柯伊伯帶之外還有黃道離散盤面和太陽圈,和依然屬于假設的奧爾特云。

依照至太陽的距離,行星依序是水星、金星、地球、火星、木星、土星、天王星、和海王星,8顆中的6顆有天然的衛星環繞著。在英文天文術語中,因為地球的衛星被稱為月球,這些衛星在英語中習慣上亦被稱為“月球”(moon),在中文里面用衛星更為常見。在外側的行星都有由塵埃和許多小顆粒構成的行星環環繞著,而除了地球之外,rou眼可見的行星以五行為名,在西方則全都以希臘和羅馬神話故事中的神仙為名。五顆矮行星是冥王星,柯伊伯帶內已知最大的天體之一鳥神星與妊神星,小行星帶內最大的天體谷神星,和屬于黃道離散天體的鬩神星

太陽系的主角是位居中心的太陽,它是一顆光譜分類為g2v的主序星,擁有太陽系內已知質量的99.86%,并以引力主宰著太陽系。木星和土星,是太陽系內最大的兩顆行星,又占了剩余質量的90%以上,目前仍屬于假說的奧爾特云,還不知道會占有多少百分比的質量。

太陽系內主要天體的軌道,都在地球繞太陽公轉的軌道平面(黃道)的附近。行星都非常靠近黃道,而彗星和柯伊伯帶天體,通常都有比較明顯的傾斜角度。

由北方向下鳥瞰太陽系,所有的行星和絕大部分的其他天體,都以逆時針(右旋)方向繞著太陽公轉。有些例外的,如哈雷彗星。

環繞著太陽運動的天體都遵守開普勒行星運動定律,軌道都是以太陽為焦點的一個橢圓,并且越靠近太陽時的速度越快。行星的軌

太陽系內天體的軌道

道接近圓形,但許多彗星、小行星和柯伊伯帶天體的軌道則是高度橢圓的。

在這么遼闊的空間中,有許多方法可以表示出太陽系中每個軌道的距離。在實際上,距離太陽越遠的行星或環帶,與前一個的距離就會更遠,而只有少數的例外。例如,金星在水星之外約0.33天文單位,而土星與木星的距離是4.3天文單位,海王星在天王星之外10.5天文單位。曾有些關系式企圖解釋這些軌道距離變化間的交互作用。

依照至太陽的距離,行星序是水星、金星、地球、火星、木星、土星、天王星、海王星,(離太陽較近的水星、金星、地球及火星稱為類地行星,木星與土星稱為近日行星,天王星與海王星稱為遠日行星)8顆中的6顆有天然的衛星環繞著,這些星習慣上因為地球的衛星被稱為月球而都被視為月球。在外側的行星都有由塵埃和許多小顆粒構成的行星環環繞著,而除了地球之外,rou眼可見的行星以五行為名,在西方則全都以希臘和羅馬神話故事中的神仙為名。

幸神星(tyche):2011年2月15日消息[1],可能在太陽系邊緣發現一顆新行星,質量或是木星4倍,將成為第九大行星和最大行星,軌道距離太陽有約15,000天文單位遠。這顆位于奧爾特云外側的氣體龐然大物-幸神星(tyche)是否存在的數據將在年底公布,科學家認為美國宇航局太空望遠鏡“廣域紅外探測器”(wise)已經收集到這方面證據。丹尼爾·惠特邁爾和約翰·馬特瑟根據彗星的角度,最先指出幸神星存在,可能主要由氫和氦構成,擁有像木星一樣的大氣,并有斑點、環和云團,可能存在衛星。當前命名為幸神星-掌管城市命運的希臘女神名字。

太陽

太陽系七大奇觀

系的形成據信應該是依據星云假說,最早是在1755年由康德和1796年由拉普拉斯各自獨立提出的。這個理論認為太陽系是在46億年前在一個巨大的分子云的塌縮中形成的。這個星云原本有數光年的大小,并且同時誕生了數顆恒星。研究古老的隕石追溯到的元素顯示,只有超新星爆炸的心臟部分才能產生這些元素,所以包含太陽的星團必然在超新星殘骸的附近。可能是來自超新星爆炸的震波使鄰近太陽附近的星云密度增高,使得重力得以克服內部氣體的膨脹壓力造成塌縮,因而觸發了太陽的誕生。

相信經由吸積的作用,各種各樣的行星將從云氣(太陽星云)中剩余的氣體和塵埃中誕生:

一旦年輕的太陽開始產生能量,太陽風會將原行星盤中的物質吹入行星際空間,從而結束行星的成長。年輕的金牛座t星的恒星風就比處于穩定階段的較老的恒星強得多。

根據天文學家的推測,目前的太陽系會維持直到太陽離開主序。由于太陽是利用其內部的氫作為燃料,為了能夠利用剩余的燃料,太陽會變得越來越熱,于是燃燒的速度也越來越快。這就導致太陽不斷變亮,變亮速度大約為每11億年增亮10%。

從現在起再過大約76億年,太陽的內核將會熱得足以使外層氫發生融合,這會導致太陽膨脹到現在半徑的260倍,變為一個紅巨星。此時,由于體積與表面積的擴大,太陽的總光度增加,但表面溫度下降,單位面積的光度變暗。

隨后,太陽的外層被逐漸拋離,最后裸露出核心成為一顆白矮星,一個極為致密的天體,只有地球的大小卻有著原來太陽一半的質量。最后形成暗矮星。

在大爆炸時期,黑洞的爆炸使其內核及外殼物質在

強烈的爆炸中,產生裂變反應,在爆炸中形成的碎片迅速澎漲,其體積由幾倍到幾十倍,由幾十倍到幾百倍,由幾百倍到幾千倍,由幾千倍到幾萬倍,由幾萬倍到幾億倍,……,在裂變過程中,產生了含有大量氕及其它能產生聚變物質的氣團,這些氣團中的可致聚變的物質達到一定量,氣團的體積和內部壓力達到一定程度,該氣團的核聚變產生了。這樣就形成恒星的幼體。幼體在漫長的歲月中,或同其它恒星合并,或吞噬漫長的旅途中所遇到的殘體,不斷發展壯大自身,逐淅成為今天的太陽[2]。這些碎片的迅速澎漲,其實是一個裂變的過程,在裂變過程中,有的以固態的形式保持下來,這些物質和其它的固態物質隨時相遇,通過相互吸引,發生物理變化或化學變化,合并在一起;不斷的吞噬所遇到的體積小的固態或液態物質,使其體積不斷增加,質量不斷增大,捕捉和吸引其它物質的能力逐漸增強,終于,吸引住了一個體積較大的固態物質,該物質又有一定的反引力的效應,這樣就成了行星和衛星的系統。我們所生存的地球有可能就是在這個背景下形成的。地球是太陽系八大行星之一,按離太陽由近及遠的次序排為第三顆[3]。它有一個天然衛星——月球,二者組成一個天體系統——地月系統。地球自西向東自轉,同時圍繞太陽公轉。地球自轉與公轉運動的結合產生了地球上的晝夜交替和四季變化。地球自轉的速度是不均勻的。同時,由于日、月、行星的引力作用以及大氣、海洋和地球內部物質的各種作用,使地球自轉軸在空間和地球本體內的方向都要產生變化。

太陽是太陽系的母星,太陽也是太陽系里唯一會發光的恒星,也是最主要和最重要的成員。它有足夠的質量讓內部的壓力與密度足以抑制和承受核聚變產生的巨大能量,并以輻射的型式,例如可見光,讓能量穩定地進入太空。

太陽在赫羅圖上的位置

太陽在分類上是一顆中等大小的黃矮星,不過這樣的名稱很容易讓人誤會,其實在我們的星系中,太陽是相當大與明亮的。恒星是依據赫羅圖的表面溫度與亮度對應關系來分類的。通常,溫度高的恒星也會比較明亮,而遵循此一規律的恒星都會位在所謂的主序帶上,太陽就在這個帶子的中央。但是,比太陽大且亮的星并不多,而比較暗淡和低溫的恒星則很多。

太陽在恒星演化的階段正處于壯年期,尚未用盡在核心進行核聚變的氫。太陽的亮度仍會與日俱增,早期的亮度只是現在的75%。

計算太陽內部氫與氦的比例,認為太陽已經完成生命周期的一半,在大約50億年后,太陽將離開主序帶,并變得更大與更加明亮,但表面溫度卻降低的紅巨星,屆時它的亮度將是目前的數千倍。

太陽是在宇宙演化后期才誕生的第一星族恒星,它比第二星族的恒星擁有更多的比氫和氦重的金屬(這是天文學的說法:原子序數大于氦的都是金屬。)。比氫和氦重的元素是在恒星的核心形成的,必須經由超新星爆炸才能釋入宇宙的空間內。換言之,第一代恒星死亡之后宇宙中才有這些重元素。最老的恒星只有少量的金屬,后來誕生的才有較多的金屬。高金屬含量被認為是太陽能發展出行星系統的關鍵,因為行星是由累積的金屬物質形成的。

內太陽系在傳統上是類地行星和小行星帶區域的名稱,主要是由硅酸鹽和金屬組成的。這個區域擠在靠近太陽的范圍內,半徑還比木星與土星之間的距離還短。

內行星

所有的內行星

四顆內行星或是類地行星的特點是高密度、由巖石構成、只有少量或沒有衛星,也沒有環系統。它們由高熔點的礦物,像是硅酸鹽類的礦物,組成表面固體的地殼和半流質的地幔,以及由鐵、鎳構成的金屬核心所組成。四顆中的三顆(金星、地球、和火星)有實質的大氣層,全部都有撞擊坑和地質構造的表面特征(地塹和火山等)。內行星容易和比地球更接近太陽的內側行星(水星和金星)混淆。行星運行在一個平面,朝著一個方向。

水星(mercury)(0.4天文單位)是最靠近太陽,也是最小的行星(0.055地球質量)。它沒有天然的衛星,僅知的地質特征除了撞擊坑外,只有大概是在早期歷史與收縮期間產生的皺折山脊。水星,包括被太陽風轟擊出的氣體原子,只有微不足道的大氣。目前尚無法解釋相對來說相當巨大的鐵質核心和薄薄的地幔。假說包括巨大的沖擊剝離了它的外殼,還有年輕時期的太陽能抑制了外殼的增長。

金星(venus)(0.7天文單位)的體積尺寸與地球相似(0.86地球質量),也和地球一樣有厚厚的硅酸鹽地幔包圍著核心,還有濃厚的大氣層和內部地質活動的證據。但是,它的大氣密度比地球高90倍而且非常干燥,也沒有天然的衛星。它是顆炙熱的行星,表面的溫度超過400°c,很可能是大氣層中有大量的溫室氣體造成的。沒有明確的證據顯示金星的地質活動仍在進行中,但是沒有磁場保護的大氣應該會被耗盡,因此認為金星的大氣是經由火山的爆發獲得補充。

地球(earth)(1天文單位)是內行星中最大且密度最高的,也是唯一地質活動仍在持續進行中并擁有生命的行星(至今科學家還沒有探索到其他來自太空的生物)。它也擁有類地行星中獨一無二的水圈和被觀察到的板塊結構。地球的大氣也于其他的行星完全不同,被存活在這兒的生物改造成含有21%的自由氧氣。它只有一顆衛星,即月球;月球也是類地行星中唯一的大衛星。地球公轉(太陽)一圈約365天,自轉一圈約1天。(太陽并不是總是直射赤道,因為地球圍繞太陽旋轉時,稍稍有些傾斜。)

火星(mars)(1.5天文單位)比地球和金星小(0.17地球質量),只有以二氧化碳為主的稀薄大氣,它的表面,例如奧林匹斯山有密集與巨大的火山,水手號峽谷有深邃的地塹,顯示不久前仍有劇烈的地質活動。火星有兩顆天然的小衛星,戴摩斯和福伯斯,可能是被捕獲的小行星。

小行星帶

小行星的主帶和特洛伊小行星

小行星是太陽系小天體中最主要的成員,主要由巖石與不易揮發的物質組成。

主要的小行星帶位于火星和木星軌道之間,距離太陽2.3至3.3天文單位,它們被認為是在太陽系形成的過程中,受到木星引力擾動而未能聚合的殘余物質。

小行星的尺度從大至數百公里、小至微米的都有。除了最大的谷神星之外,所有的小行星都被歸類為太陽系小天體,但是有幾顆小行星,像是灶神星、健神星,如果能被證實已經達到流體靜力平衡的狀態,可能會被重分類為矮行星。

小行星帶擁有數萬顆,可能多達數百萬顆,直徑在一公里以上的小天體。盡管如此,小行星帶的總質量仍然不可能達到地球質量的千分之一。小行星主帶的成員依然是稀稀落落的,所以至今還沒有太空船在穿越時發生意外。

直徑在10至10.4米的小天體稱為流星體。

谷神星(ceres)(2.77天文單位)是主帶中最大的天體,也是主帶中唯一的矮行星。它的直徑接近1000公里,因此自身的引力已足以使它成為球體。它在19世紀初被發現時,被認為是一顆行星,在1850年代因為有更多的小天體被發現才重新分類為小行星;在2006年,又再度重分類為矮行星。

小行星族

在主帶中的小行星可以依據軌道元素劃分成幾個小行星群和小行星族。小行星衛星是圍繞著較大的小行星運轉的小天體,它們的認定不如繞著行星的衛星那樣明確,因為有些衛星幾乎和被繞的母體一樣大。

在主帶中也有彗星,它們可能是地球上水的主要來源。

特洛依小行星的位置在木星的l4或l5點(在行星軌道前方和后方的不穩定引力平衡點),不過"特洛依"這個名稱也被用在其他行星或衛星軌道上位于拉格朗日點上的小天體。希耳達族是軌道周期與木星2:3共振的小行星族,當木星繞太陽公轉二圈時,這群小行星會繞太陽公轉三圈。

內太陽系也包含許多“淘氣”的小行星與塵粒,其中有許多都會穿越內行星的軌道。

太陽系的中部地區是氣體巨星和它們有如行星大小尺度衛星的家,許多短周期彗星,包括半人馬群也在這個區域內。此區沒有傳統的名稱,偶爾也會被歸入“外太陽系”,雖然外太陽系通常是指海王星以外的區域。在這一區域的固體,主要的成分是“冰”(水、氨和甲烷),不同于以巖石為主的內太陽系。

外行星

所有的外行星

在外側的四顆行星,也稱為類木行星,囊括了環繞太陽99%的已知質量。木星和土星的大氣層都擁有大量的氫和氦,天王星和海王星的大氣層則有較多的“冰”,像是水、氨和甲烷。有些天文學家認為它們該另成一類,稱為“天王星族”或是“冰巨星”。這四顆氣體巨星都有行星環,但是只有土星的環可以輕松的從地球上觀察。“外行星”這個名稱容易與“外側行星”混淆,后者實際是指在地球軌道外面的行星,除了外行星外還有火星。

木星(jupiter)(5.2天文單位),主要由氫和氦組成,質量是地球的318倍,也是其他行星質量總合的2.5倍。木星的豐沛內熱在它的大氣層造成一些近似永久性的特征,例如云帶和大紅斑。木星已經被發現的衛星有63顆,最大的四顆,甘尼米德、卡利斯多、埃歐、和歐羅巴,顯示出類似類地行星的特征,像是火山作用和內部的熱量。甘尼米德比水星還要大,是太陽系內最大的衛星。

土星(saturn)(9.5天文單位),因為有明顯的環系統而著名,它與木星非常相似,例如大氣層的結構。土星不是很大,質量只有地球的95倍,它有60顆已知的衛星,泰坦和恩塞拉都斯,擁有巨大的冰火山,顯示出地質活動的標志。泰坦比水星大,而且是太陽系中唯一實際擁有大氣層的衛星。

天王星(uranus)(19.6天文單位),是最輕的外行星,質量是地球的14倍。它的自轉軸對黃道傾斜達到90度,因此是橫躺著繞著太陽公轉,在行星中非常獨特。在氣體巨星中,它的核心溫度最低,只輻射非常少的熱量進入太空中。天王星已知的衛星有27顆,最大的幾顆是泰坦尼亞、歐貝隆、烏姆柏里厄爾、艾瑞爾、和米蘭達。

海王星(une)(30天文單位)雖然看起來比天王星小,但密度較高使質量仍有地球的17倍。他雖然輻射出較多的熱量,但遠不及木星和土星多。海王星已知有13顆衛星,最大的崔頓仍有活躍的地質活動,有著噴發液態氮的間歇泉,它也是太陽系內唯一逆行的大衛星。在海王星的軌道上有一些1:1軌道共振的小行星,組成海王星特洛伊群。

彗星歸屬于太陽系小天體,通常直徑只有幾公里,主要由具揮發性的冰組成。它們的軌道具有高離心率,近日點一般都在內行星軌道的內側,而遠日點在冥王星之外。當一顆彗星進入內太陽系后,與太陽的接近會導致她冰冷表面的物質升華和電離,產生彗發和拖曳出由氣體和塵粒組成、rou眼就可以看見的彗尾。

短周期彗星是軌道周期短于200年的彗星,長周期彗星的軌周期可以長達數千年。短周期彗星,像是哈雷彗星,被認為是來自柯伊伯帶;長周期彗星,像海爾·波普彗星,則被認為起源于奧爾特云。有許多群的彗星,像是克魯茲族彗星,可能源自一個崩潰的母體。有些彗星有著雙曲線軌道,則可能來自太陽系外,但要精確的測量這些軌道是很困難的。揮發性物質被太陽的熱驅散后的彗星經常會被歸類為小行星。

半人馬群是散布在9至30天文單位的范圍內,也就是軌道在木星和海王星之間,類似彗星以冰為主的天體。半人馬群已知的最大天體是10199chariklo,直徑在200至250公里。第一個被發現的是2060chiron,因為在接近太陽時如同彗星般的產生彗發,目前已經被歸類為彗星。有些天文學家將半人馬族歸類為柯伊伯帶內部的離散天體,而視為是外部離散盤的延續。

外海王星區

在海王星之外的區域,通常稱為外太陽系或是外海王星區,仍然是未被探測的廣大空間。這片區域似乎是太陽系小天體的世界(最大的直徑不到地球的五分之一,質量則遠小于月球),主要由巖石和冰組成。

柯伊伯帶,最初的形式,被認為是由與小行星大小相似,但主要是由冰組成的碎片與殘骸構成的環帶,擴散在距離太陽30至50天文單位之處。這個區域被認為是短周期彗星——像是哈雷彗星——的來源。它主要由太陽系小天體組成,但是許多柯伊伯帶中最大的天體,例如創神星、伐樓拿、2003el61、2005fy9和厄耳枯斯等,可能都會被歸類為矮行星。估計柯伊伯帶內直徑大于50公里的天體會超過100,000顆,但總質量可能只有地球質量的十分之一甚至只有百分之一。許多柯伊伯帶的天體都有兩顆以上的衛星,而且多數的軌道都不在黃道平面上。

柯伊伯帶大致上可以分成共振帶和傳統的帶兩部分,共振帶是由與海王星軌道有共振關系的天體組成的(當海王星公轉太陽三圈就繞太陽二圈,或海王星公轉兩圈時只繞一圈),其實海王星本身也算是共振帶中的一員。傳統的成員則是不與海王星共振,散布在39.4至47.7天文單位范圍內的天體。傳統的柯伊伯帶天體以最初被發現的三顆之一的1992qb1為名,被分類為類qb1天體。

冥王星(pluto)和卡戎(charon)

冥王星和已知的三顆衛星

目前還不能確定卡戎是否應被歸類為當前認為的衛星還是屬于矮行星,因為冥王星和卡戎互繞軌道的質心不在任何一者的表面之下,形成了冥王星-卡戎雙星系統。另外兩顆很小的衛星尼克斯(nix)與許德拉(hydra),則繞著冥王星和卡戎公轉。

冥王星在共振帶上,與海王星有著3:2的共振(冥王星繞太陽公轉二圈時,海王星公轉三圈)。柯伊伯帶中有著這種軌道的天體統稱為類冥天體。

離散盤與柯伊伯帶是重疊的,但是向外延伸至更遠的空間。離散盤內的天體應該是在太陽系形成的早期過程中,因為海王星向外遷徙造成的引力擾動才被從柯伊伯帶拋入反復不定的軌道中。多數黃道離散天體的近日點都在柯伊伯帶內,但遠日點可以遠至150天文單位;軌道對黃道面也有很大的傾斜角度,甚至有垂直于黃道面的。有些天文學家認為黃道離散天體應該是柯伊伯帶的另一部分,并且應該稱為"柯伊伯帶離散天體"。

鬩神星(136199eris)(平均距離68天文單位),又名齊娜,是已知最大的黃道離散天體,并且引發了什么是行星的辯論。它的直徑至少比冥王星大15%,估計有2,400公里(1,500英里),是已知的矮行星中最大的。鬩神星有一顆衛星,鬩衛一(dysnomia),軌道也像冥王星一樣有著很大的離心率,近日點的距離是38.2天文單位(大約是冥王星與太陽的平均距離),遠日點達到97.6天文單位,對黃道面的傾斜角度也很大。

美國加州技術研究所的科學家2003年在太陽系的邊緣發現了這顆行星,編號為2003ub313,暫時命名為齊娜,直到2005年7月29日才向外界公布這個發現。據悉,各國天文學家于2006年8月24日的國際天文學聯合會大會上否認其為大行星。

據介紹,齊娜的直徑約1490英里,較太陽系邊緣的矮行星冥王星還要大77英里。而齊娜距離太陽90億英里,這個距離大約是冥王星和太陽間距離的三倍,也就是大約97.6個天文單位,一個天文單位指的太陽與地球之間的距離。齊娜繞行太陽一周,得花560年。它也是迄今為止我們所知道的太陽系中最遠的星體,是“庫伊伯爾星帶”里亮度占第三位的星體。它比冥王星表面的溫度低,約零下214c,是一個非常不適合居住的地方。

這個星體呈圓形,最大可能是冥王星的兩倍。他估計新發現的這顆星星的直徑估計有2100英里,是冥王星的1.5倍。

這個星體與太陽系統的主平面保持著45度的夾角,大部分其它行星的軌道都在這個主平面里。布朗說,這就是它一直沒有被發現的原因。

太陽系在線